Optimal actions in problems with convex loss functions
نویسندگان
چکیده
Researches in Bayesian sensitivity analysis and robustness have mainly dealt with the computation of the range of some quantities of interest when the prior distribution varies in some class. Recently, researchers’ attention turned to the loss function, mostly to the changes in posterior expected loss and optimal actions. In particular, the search for optimal actions under classes of priors and/or loss functions has lead, as a first approximation, to consider the set of nondominated actions. However, this set is often too big to take it as the solution of the decision problem and some criteria are needed to choose an optimal alternative within the nondominated set. Some authors recommended to choose the conditional C-minimax or the posterior regret C-minimax alternative within the set of all possible alternatives. These criteria are quite controversial since they could lead to actions with huge relative increase in posterior expected loss with respect to Bayes actions. To overcome such drawback, we propose a new method, based on the smallest relative error, to choose the least sensitive action and to discriminate alternatives within the nondominated set when the decision maker is interested in diminishing the relative error. We study how to compute the least sensitive action when we consider classes of convex loss functions. Furthermore, we obtain its relation with other proposed solutions: nondominated, minimax and posterior regret minimax actions. We conclude the paper with an example on the estimation of the mean of a Poisson distribution. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملForcasting under General Loss Functions
This paper presents some results for solving prediction problems under general asymmetric loss functions. We prove existence of the optimal predictor and uniqueness under certain additional assumption fulllled for instance by convex prediction error loss. Furthermore we study the question of niteness of the optimal predictor for prediction error loss with saturation.
متن کاملSome Results on Convex Spectral Functions: I
In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...
متن کاملStochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure
In this work we consider the stochastic minimization of nonsmooth convex loss functions, a central problem in machine learning. We propose a novel algorithm called Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), which exploits the structure of common nonsmooth loss functions to achieve optimal convergence rates for a class of problems including SVMs. It is the first stochastic algori...
متن کاملOnline Learning for Adversaries with Memory: Price of Past Mistakes
The framework of online learning with memory naturally captures learning problems with temporal effects, and was previously studied for the experts setting. In this work we extend the notion of learning with memory to the general Online Convex Optimization (OCO) framework, and present two algorithms that attain low regret. The first algorithm applies to Lipschitz continuous loss functions, obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 50 شماره
صفحات -
تاریخ انتشار 2009